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Abstract. Soliton solution of a discrete non-linear equation of which the KdV, Volterra and 
Toda equation are particular cases, have been quantised by the semi-classical method of 
Dashen et d. The primary feature of the system is the emergence of the same stability angle 
in all three cases. The discrete energy levels of the quantised system were found to depend 
on the characteristic constants of the individual non-linear equations. 

1. Introduction 

In recent years soliton solutions of non-linear equations have been investigated quite 
exhaustively for constructing models of quark confinement (Joos 1975) and of hadrons 
with finite extension (Popov 1977). The most pertinent step in the above mentioned 
programmes is the quantisation of the classical lump. In general there exist two distinct 
methods of procedure for the system to be quantised; one is the general method after 
Dirac (1950) and Faddeev (Faddeev and Takhatajan 1974) which takes care of all 
possible constraints on the system; and the other is the semi-classical method of Dashen 
et a1 (1974, 1975) which is suitable for periodic solutions. In this work we have applied 
the WKB approach to a discrete system for exacting the energy level scheme. 

2. Formulation 

where a, PI,  P2,  are three constants whose special values yield the three known 
equations as particular cases. The one- and two-soliton solutions of equation (1) have 
been obtained by Hirota and Satsuke (1976). The periodic one-soliton solution reads 

(2) 
with a similar expression for U,. Equation (2) describes a soliton propagating with a 
speed sinh PIP. Here w is the frequency, k is the wavevector of the soliton and b is a 
constant given by 

U ,  = 2w sinh b/[cosh b +cos(2wt - 2kn) l  

Ea- 'p^,  + p^2 cos k +sin k 
ea-'fi1+fi2cos k-sin k 

exp 26 = € = *1. 
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The first step in the quantisation procedure is the calculation of the stability angles 
defined by Faddeev and Takhatajan (1974). To do this we set in equation (1)  

U, = U , ( l S ) + S U ,  

U, = U, ( I S )  + SU, (3) 

where u,(ls) and U,, (1s) are one-soliton solutions. This gives the linearised equations: 

6Un = [ a - ' / 2 ( ~ :  - 1 ) ~ "  + ~ l I O ( ~ n - l / 2 - ~ n + . 1 / 2 )  S u n  

The stability angles are obtained by the requirement that 

su,(t + 7) = ewJr' SU, ( t )  

~ v , ( t + 7 ) = e ~ " ' ) ~ u , ( t )  

on, representing the stability angles. But as the system (1)  is completely integrable, 
one need not solve equation (4) and instead one can take recourse to the method used 
by Dashen. That is, we examine a particular two-soliton solution for U, and U,, each of 
which contains the usual singlet and another one with different internal period and 
amplitude. We then examine the behaviour of the system as the amplitude of the 
second soliton tends to zero. The two-soliton solution following Hirota is given by 

~n = lg(fI/fn 1 ; 
fl, = E ,  sinh PI ; 

fn = c expj c cLl(2.rll + 4 , )  +C ~ , , p , p , )  

t'n = M g  I/ g, 1 ; .rll =fl,r-P,.rl-.rlP; 

E, = *l 
2 

!L=O,l  !&=I 

2 

2 

gL = c expj c k,(2.rlt ++:)+E AlfkIk/) 

1 - E,€, exp(P, + P,) ) exp A,, = j 
II. = 0 . 1  U, = 1 

E, exp P, - E, exp PJ 2 

exp 4, = E&'PI + p 2  cosh PI -sinh PI 

exp 4 :  = E , ~ - ~ P ~  + P 2  cosh PI + sinh PI 

exp +, = E , ~ - ~ ( E , L Y / ~ Z  + P I  cosh PI -sinh PI) 

exp +; = E , ( Y - ' ( E , ~ P ~ + P I  cosh PI +sinh PI) 

and where P,, .rip are real constants. To analyse the behaviour of the system as the 
amplitude of the second soliton goes to zero, we set e'' = C1, ey2 = C2 as the amplitude 
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of the two. We then expand the expression for two solitons from (4) in CZ and collect 
terms linear in Cz which yields the solution of the linearised equation (4) as 

Su, = 2{e"zB - e';A} exp{i(sin k2t  + kzn)} 

with A and B given by 
A = {sin k2  + (sin k l  +sin k2) e 2%+';+AI2}/(1 + e2i'+';) 

B = {sin k + (sin k +sin k) e2q1+'1+A1z}/(1 + 
? j 1 =  n,t -P1n. 

To quantise the solution we need the classical energy and action. To compute these we 
note that the Lagrangian of the system is 

2 L =S(u,Lin + ~ n U n ) - [ a - ' ( p l -  1)(~3 , /12)  +p1(uZn/2) + ~ ~ n I ( ~ n - l / 2 - ~ n + l / Z )  

- [a  (pi- 1)(~3,/12) + p 2 ( ~ 2 , / 2 )  + a - ' ~ n I ( ~ n - 1 / 2 -  Un+1 /2 ) .  (8) 

Substituting the classical solution ( 2 )  into (8) and integrating over one period we obtain 

where A, B ,  C are given in terms of the Fourier expansion coefficients of the soliton 
solutions and are of the form 

A = 2[sinh2b2u:+XbE sinh'f] 

+27rp1 s i n h f ~ i n h ~ 6 { ~ u , a , a , , ~  +2a,a-lal,, + ala,u-(,+,,} (10) 

U, = al cos[l(wt - kn)] (11) 
where 

with al = [a//(& -@)I, a, p being roots of the equation z 2  + 22 sinh b + 1 = 0 with a 
similar expression for U,. Also, from the expression of the Hamiltonian, using energy 
conservation we get 

The last stage in the quantisation is to evaluate Tr (H  - E)-'. We note in the usual 
manner that 

Gc(E)=Tr (H-E) - '= ( i /h )Tr  

aE 1/2 in =iJz, h 2rrh I d7dnTij-l exp[5;(sci(r)-5,x+E.;)]. 

Integrating by the method of steepest descent we get 

Equation (14) solves for T as a function of energy. Essentially equation (14) is a 
biquadratic equation in T and can be depicted as 

TI4@ 4- T ' ~ A  + 7°C = E - -$kk. (15) 
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Furthermore we have from the consideration that the Green function should have pole 

where W{,,k) is defined as 

W{nk) = S,1(7(E))fE7-~nk(.r(E)). (17) 

When the value of ( E )  from equation (14) is substituted in (16) we get an expression for 
H, the quantised energy of the system. 

3. Discussion 

The most interesting observation that emerges from the above discussions is that the 
stability angles W k ( T )  are independent of the constants and a. That is all the three 
non-linear equations KdV, Toda Lattice and the Volterra system have the same 
stability angles but since the classical action and energy S,,, E,, depend on PI, P2 and (Y 

through the constants A, B, C the quantised energy levels E obtained, equation (17) 
becomes completely different in each case. 
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